
-- NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.C SC.(DFM,MAV)/Mar-90 1

Semi-Annual Technical Report Submitted to the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Langley Research Center, Hampton, Va.

for research entitled

MULTI-VERSION SOFTWARE RELIABILITY
THROUGH

FAULT-AVOIDANCE AND FAULT-TOLERANCE

(NAG-I-983)

from

Mladen A. Vouk, Co-Principal Investigator, Assistant Professor

David F. McAIlister, Co-Principal Investigator, Professor

Department of Computer Science
North Carolina State University

Raleigh, N.C. 27695-8206
(919) 737-2858

ReDort Period
Beginning Date: September 1, 1989.

Ending Date: March 31, 1990.

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 2

Table of Contents

Project Progress Summary

1. Preliminary Report on Consensus
Presence of Correlated Failures

2. Modeling Execution Time
Fault-Tolerant Software

Voting in the

of Multi-Stage N-Version

NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MA V)/Mar-90 3

Project Progress Summary

In this project we have proposed to investigate a number of experimental and theoretical issues
associated with the practical use of multi-version software in providing dependable software
through fault-avoidance and fault-elimination, as well as run-time tolerance of software faults. In
the period reported here we have worked on the following:

We have continued collection of data on the relationships between software faults and
reliability, and the coverage provided by the testing process as measured by different metrics
(including data flow metrics). We continued work on software reliability estimation methods
based on non-random sampling, and the relationship between software reliability and code
coverage provided through testing.

We have continued studying back-to-back testing as an efficient mechanism for removal of
uncorrelated faults, and common-cause faults of variable span. We have also been studying
back-to-back testing as a tool for improvement of the software change process, including
regression testing.

We continued investigating existing, and worked on formulation of new fault-tolerance
models. In particular, we have partly finished evaluation of Consensus Voting in the
presence of correlated failures, and are in the process of finishing evaluation of Consensus
Recovery Block (CRB) under failure correlation. We find both approaches far superior to
commonly employed fixed agreement number voting (usually majority voting). We have also
finished a cost analysis of the CRB approach.

This report describes the results obtained in the period September 1, 1989 to March 31, 1990.
Detailed reports are attached on "Preliminary Report on Consensus Voting in the Presence of
Failure Correlation", and on "Modeling Execution Time of Multi-Stage N-Version Fault-Tolerant
Software".

w

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 4

Preliminary Report on Consensus Voting in the Presence
of Failure Correlation*

Mladen A. Vouk

David F. McAHister

Department of Computer Science, Box 8206

North Carolina State University

Raleigh, NC 27695-8206

Key Words

Voting, Consensus Voting, N-version programming, System reliability, Software fault-tolerance

Reader Aids

Purpose: Present empirical evaluation of Consensus Voting scheme.
Special math needed for explanations: Very basic probability and statistics
Special math needed to use results: None
Results useful to: Reliability analysts, software reliability engineers, software system designers,

designers of fault-tolerant software

Abstract

The effect of failure correlation is to reduce the output space in which a voter makes decisions. A
voting strategy called consensus voting may in part compensate for the problems that arise from this
when classical, f'Lxed agreement number, voting is employed. Consensus voting automatically adapts
to different component reliability and output space cardinality characteristics. Theory predicts that in
small output spaces consensus voting on the average performs as well or better than majority voting,
while in large output spaces its performance compares with 2-out-of-n voting. Because consensus
voting is auto-adaptive it will perform better than majority voting whenever effective space cardinality
exceeds two. This work empirically explores this voting strategy by applying it to a large number of
functionally equivalent software components. It is confirmed that majority voting strategy provides
reliability which is a lower bound, while ideal 2-out-of-n voting strategy provides reliability which is
an upper bound, on the reliability by consensus voting.

*Research supported in part by NASA Grant No. NAG-I-983

NASA/NAG-1-983/Semi-AnnualReport/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 5

1. Introduction

In a fault-tolerant system based on software diversity and a voting strategy [e.g. 1, 2], there is a

difference between correctness and agreement. McAllister, Sun and Vouk [7] distinguish between

agreement and correctness and develop and evaluate an auto-adaptive voting strategy called

Consensus Voting. This strategy is particularly effective in small output spaces because it

automatically adjusts the voting to the changes in the effective output space size. They show that

majority voting strategy provides a lower bound on the reliability provided by consensus voting, and

that an ideal 2-out-of-n voting strategy gives an upper bound on this reliability.

The theory developed in [7] was derived under the assumption of failure independence. In this

paper we show that the effect of failure correlation is similar to a reduction in the output space

cardinality, and therefore under some conditions, consensus voting can considerably improve

reliability of multiversion systems even in the presence of failure correlation. We will argue that if

choosing a wrong answer or having no answer has the same impact on the system, then consensus

voting should be preferred to majority voting even in the presence of correlated failures. We

empirically explore this issue by using 20 functionally equivalent programs developed in a

multiversion experiment [4]. The primary aim of this study is investigation of the properties of

consensus voting, and not of software diversity and the faults that may be associated with such a

process. The versions are used _ as a medium for testing the theoretical hypotheses about

consensus voting.

Throughout this paper we shall use the terms software "component(s)" and "version(s)"

interchangeably. When two or more functionally equivalent software components fail on the same

input case we shall say that a coincident failure has occurred, k failing components give a

coincident failure of span k. If a coincident failure of k versions is caused by an identical or similar

fault we say that the fault spans k versions. When two or more versions give the same incorrect

response, to a given tolerance, we say that an identical-and-wrong (IAW) answer was obtained. If

the measured probability of the coincident failures is significantly different from what would be

expected by random chance (using independent failures model) then we say that the observed

coincident failures are correlated or dependent.

2. Voting Strategies

In an m-out-of-n fault-tolerant software (FTS) system the number of functionally equivalent

independently developed versions is n, and m is the agreement number, or the number of matching

- /

_ NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 6

outputs, which the voting or adjudication algorithm requires for system success [e.g. 5, 6]. In the
n+l

past, because of cost restrictions n was rarely larger than 3, and m was traditionally chosen as 2

Fn+l-1
for odd m. In general, in majority voting m = ,--_-,, where ["1 denotes the ceiling function.

Scott, Gault and McAllister [3] showed that, if the output space is large, and true statistical

independence of version failures can be assumed, there is no need to choose m > 2 regardless of the

size of n, although larger m values offer additional benefits. We will use the term 2-out-of-n

voting for the case where agreement number m=2.

For voting in small output spaces McAllister, Sun and Vouk [7] suggest a third voting technique

called consensus voting. Let the output space have cardinality r, and let all the output classes

have non-zero probability of occurring. Assume that the output classes, j, are labeled 1..r such that

output 1 represents the _ correct output, while outputs 2..r the possible incorrect output classes.

Situations where multiple correct answers are possible are not considered explicitly. All the outputs

in one class are assumed to be identical. Let the vector (nl,n2,n3 nr) represent the event where

output j occurs nj times such that

n 1 + n2 +... +nr =n.

Because the effective output space cardinality is r <oo, answer agreement does not imply correctness.

For example, if r=3,and n=5, then majority is m=3. The events where the maximum number of

agreeing versions is 3 are (3,2,0), (3,0,2), (2,0,3), (2,3,0), (0,2,3), (0,3,2), (3,1,1), (1,3,1), and

(1,1,3). An obvious strategy is to choose the output with the largest frequency. The problem is that

only three of the events offer outputs where the agreeing majority is correct. Furthermore, majority

voting will fail to deliver an output for events (2,2,1), (2,1,2) and (1,2,2). However, if choosing a

wrong answer, or having no answer, has the same impact on the system, then choosing one result

with two identical outputs at random is a better strategy (on the average) than declaring system

failure. In the example there is a 50 percent chance that the correct output will be selected when this

formal strategy is used.

2.1 Consensus Voting Algorithm

In consensus voting the voter uses the following algorithm to select the "correct" answer:

NASA/NAG- 1-983/Semi-Annual ReportF2.1/NCSU.CSC.(DFM,MAV)/Mar-90 7

If there is a majority agreement (m _>[-E__3_]n+l,n>l) then this answer is chosen as the " correct"

answer.

Otherwise, if there is a unique maximum agreement, but this number of agreeing versions is less
n+ l

than [E__L-], then this answer is chosen as the "correct" one.

Otherwise, if there is a tie in the maximum agreement number from several output classes then
one set is chosen at random and the answer associated with this set is chosen as the "correct"
one.

The theory of consensus voting is described in [7]. It is shown that the strategy is equivalent to

majority voting when the output space cardinality is 2, and to the 2-out-of-n voting when the output

space cardinality tends to infinity provided agreement number is not less than 2. It is also proved in

[7] that, in general, the boundary probability below which the system reliability begins to deteriorate
1

as more versions are added is r" This makes the binary space (and majority) voting a special case

with r=-2.

2.2. Independent failures

Several versions may fail coincidentally because of one or more faults. In an ideal situation the

versions would fail independently, and in addition the probability of identical and wrong answers

from two or more versions would be zero, or very close to zero. Then, if two versions agreed on an

answer that agreement could be equivalenced with correctness, and 2-out-of-n voting would give

excellent results because it could tolerate coincident (but not identical) failures of all but two versions.

Under the same conditions consensus voting performs at least as well as 2-out-of-n voting. In fact, it

may yield marginally better results because the algorithm (as def'med in 2.1) allows tie breaking even

in the case when all classes offered to a voter contain only one item. Hence, there is a finite

probability that in the cases where 2-out-of-n voting fails (m < 2) consensus voting will return the

correct answer.

The other extreme is the case of binary output space (r=2). An answer is either correct, or incorrect

and no distinction is possible among incorrect answers. Majority voting then provides a way of

distinguishing the output class that is chosen as the correct answer. In binary output space,

consensus voting reduces to majority voting and cannot improve on it.

The problem that majority voting does not solve are the small space situations where the vote fails

because a voter is offered more than two classes to select the "correct" answer from but there is no

-- NASA/NAG- 1-983/Semi-Annual ReporV2.1/NCSU.CSC.(DFM,MAV)/Mar-90 8

majority so voting cannot return a decision. The events are the ones where there is no agreement

majority but one of the outputs occurs more frequently than any other, and the situation where there

is a tie between the maximum number of outputs in two or more output classes.

System
reliability

O. g t _'- "-

2- ,,,,o ,,>I i_

0.7 = 15 components

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0

" r=3

)' ,e v;,%0s//

,_&..'x_.&--" : : : : : : : :

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Component reliability

Figure 2.1 System reliability under different voting strategies vs. component reliability for

n=15. The probability of each j=2 r failure state is 1-p
r-l"

If version failures are independent then for r> n >1 the lower limit on the agreement number for such

events is m=l because, at worst, all the outputs are different. When 1 < r < n, there is a finite

probability that at least one output of every class will be available, and that the remainder are equally

distributed among two or more classes. Hence, the lower limit on m is [_n.j + 1, where [__represents

the floor function. For i smaller than this limit, there are always more than i outputs in at least one
n+r-1 n+l

class. In general, the above special events will occur when i lies between and 1---_'].output

In the simplest case let the reliability of each version be p, and let each of the wrong outputs occur

with equal probability qj = q = . It can be shown [7] that the probability of obtaining exactly i

identical and wrong outputs, Pr{E(i,n)} where E(i,n) = "exactly i outputs from n versions are

wrong", is then no larger than

(r-1)nCi qi (l_q)n-i.

NASA/NAG-1-983/Semi-AnnualReport/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 9

When r tends to infinity q tends to zero, and the probability of obtaining identical and wrong answers

by chance also tends to zero. This fact is the basis for the 2-out-of-n voting strategy. When i is not

smaller than the majority this incorrect output will be voted as correct in N-version programming.

But, depending on the voting strategy, it may or may not be voted as the correct answer when i is a
n+r- 1 n+ 1

number between m = L"___" __]and m = [-"_*-_-3-r].
r L

The theoretical relationship between r and the voting strategies derived in [7] is illustrated in Figure

2.1 for n=15. In the figure we plot the reliability of an N-version system based on consensus

voting versus the reliability of an average component for different output space cardinaiity values.

Also shown are the 2-out-of-n and majority voting boundary curves. It is important to note that

both majority voting and 2-out-of-n voting are effectively output space insensitive. For n odd, the
n+l

former behaves as if r=2 since agreement number is m =-_ which is equivalent to letting r=2 in m

n+r- 1
= L_J for consensus voting. 2-out-of-n is a viable strategy only when r >>1. Consensus

• rn+17
voting is r sensitive and therefore will perform better than majority voting for r > 2 since/-_--- I >__

n+r- 1
L_J. The reliability based on majority voting is a lower limit on the reliability of consensus

voting, while 2-out-of-n voting reliability is an upper limit on the reliability of consensus voting.

System
reliability

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

#..h._,e_t_--,-----*--*_ p = 0.80

£)_.Cr,,_r.O_ 0''''0_0

o_ p=0.50

o/

o

p=0.20

mmmltFmm--'=m--m

m F

m! p=O.05
_o.o:ooccttc,o_o_o--o,

10 100

Output

I 5 components]Consensus votln_l

1000

space ¢ardlnality (r)

.0
!

10000

Figure 2.2. System reliability vs. output space cardinality for n=5 using consensus voting. All

components have the same reliability, p. The probability of each j=2,..,r failure state is .

-- NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 10

The dependence of consensus voting reliability on the output space cardinality and the meaning of

r >> 1 is further illustrated in Figure 2.2 for n=5. The data points were obtained by simulation.

Failure state probabilities were assumed to be the same for all j=2..r incorrect outputs. We note that

for a given p the asymptotic system reliability corresponds to the 2-out-of-n voting approach, while

the r=2 point corresponds to majority voting. For example, in the figure the asymptotic behavior is

observed when r > 10 for component reliability p > 0.8. In general, larger n values will reduce the

influence of small r values.

In practice, failure probabilities of individual versions will be scattered around some mean value.

Increasing scatter up to a certain point increases reliability obtained by voting. When the scatter is

excessive the system reliability can actually be lower than the reliability of one or more of its best

component versions. This effect is illustrated in Figure 2.3. Data shown there were obtained by

simulation (100,000 case runs for each point shown). We plot the system reliability based on

consensus voting and majority voting against the standard deviation of the sample of version failure

probabilities (the mean value being constant). Also plotted for each point is the reliability of the best

single version involved in the simulation. The feature to note is the very sharp step in this reliability

once some critical value of the standard deviation of the sample is exceeded (about 0.03 in this

example).

1.0000

o.ggg5

o.gg90

System o.gg85
reliability

0.gg80

0.9975

Consensus voting

%.o.,._-_.o..---o ---'°-"o /

Majority voting

Simulation

jO--.-o--o

..... Reliability of the
Best Version

5 components

with average component

reliability p = 0.95,
Cardlnality r = 4

0.9970 I ! ! I ! I ! I

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Standard deviation of component reliability

Figure 2.3. System reliability vs. standard deviation of version reliability for n=5 using

consensus voting. The probability of each j=2,..,r failure state is 1-p
r-l"

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 11

Similarly it can be shown [7] that increased variability in the failure state probability, i.e. conditional

probability that an output is in a particular failure class given that a program has failed, reduces

advantages that consensus voting has over majority voting and for sufficiently large scatter around an

effective r value consensus voting reduces to majority voting.

2.3. Correlated failures

When version failures are correlated [e.g. 2, 8, 9, 10] for some reason the probability of obtaining

identical and wrong answers may be considerably increased even for very large r values. In the

extreme this reduction may be all the way down to binary output space.

For example, let k out of n functionally equivalent versions have an identical fault which, when

excited, results in identical and wrong responses from all k versions. Let probability that the input

data profile excites the fault be Pr{f}. Then the probability of k identical and wrong answers has a

lower bound of

Pr{E(k,n)} > Pr{f}

regardless of how large r is. If there are no other faults in the system then whenever a failure occurs

there will be k outputs in the output class belonging to fault f, and n-k outputs in the j=l class

(correct answers). For each test case where there is no failure all outputs will be in the j=l class. This

means that in effect the output space cardinality will be reduced to two. Voting algorithms are then

presented with two choices (k, or n-k versions) with probability Pr{f}, and with only one choice (n

versions) with probability 1-Pr{f}. On the average, the voting algorithm will be offered

1 * (1-Pr{f}) + 2" Pr{f}

classes to chose its response from.

On the other hand, if a fault causes correlated coincident failures of k versions but all failing versions

return different responses, then in the presence of only that fault the effective decision space for

voting will not exceed k+ 1. In practice, versions may contain several correlated faults with different

spans, different excitation probabilities, and different properties regarding IAW answers.

Furthermore, note that n > k, where n is the number of versions, represents a hard upper bound on

the decision space cardinality. So, in general, presence of faults resulting in correlated failures will

produce an effect which is equivalent to a reduction of the output space cardinality. In situations like

-- NASA/NAG-1-983/Semi-AnnualReport/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 12

thatavoting strategywhichcanadaptto changesin theeffectiveoutputspacecardinalitymayhave

definite advantagesover non-ideal2-out-of-n (which is fast,butperformsworsein reducedspace)
andmajorityvoting (whichreturnsanincorrectanswerasthecorrectonelessoften,but fails if there

is nomajority).

The questionsthat we wished to exploreby experimentingwith actual multi-version software

containinggenuinefaultswhichgiveriseto correlatedversionfailures, were:

a) Are theresituationsandversioncombinationswhereconsensusvoting would improvesystem

reliabihtywith respectto majorityvoting?
b) What aretheconditionsunderwhich thishappens,anddo theseconditionsagree,andif soto

what extent, with the theoretical expectationsabout consensusvoting derived using an

independentmodel?

Fromthediscussionin 2.2wewouldexpectconsensusvoting:

1. To alwaysofferreliability atleastequivalentto majorityvoting.
2. To offer higheraveragesystemreliability thanmajorityvoting if theaveragedecisionspacein

whichvotersoperatepertestcaseis large(exceeding4 or 5 basedonFigures2.1and2.2).

3. To offer averagesystemreliability which is notmuchbetter thanthat of majority voting, but
maybeworsethanreliability of oneormoreof theversionsin situationswhereaverageversion

reliability haslargestandarddeviation(unmatchedversions).

4. To offer averagesystemreliability thatisnotmuchbetterthanthatofferedby majorityvoting in

situationswheretheaveragedecisionspace"seen"bythevotersper testcasehaslargestandard

deviation (e.g. preferential excitationof particular faults, drastically different visibility of
differentfaults toemployedtestingprofile).

3. Results

We have used 20 functionally equivalent programs described in [4] to construct an evaluation

environment (see Appendix I). The versions and test cases we used were known to result in

relatively high intensity correlated program failures. The choice of output variables involved in the

voting, and the number and the choice of versions, all influence the mix and intensity of both

uncorrelated and correlated failures observed during testing (for a given test set profile). In

conducting our analyses we considered a number of combinations of versions and output variables.

NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 13

We present the results for the 16 combinations described in Appendix II. Twelve combinations

represent selections made solely on the basis of individual version reliabilities. For example,

combination 3 consists of five versions that exhibited lowest failure rate based on all output values.

Combination 8 is the same version set re-evaluated considering only three most critical output

variables, while set 11 are the five versions that showed lowest failure rate based on three most

critical output variables. Three combinations (11, 14,16) were selected with the intent of forming

well balanced sets, i.e. combinations for which the scatter of component version reliabilities around

the mean was low.

Table 3.1 Version characteristics

Version Failure Rate (all)* Failure Rate (best.acc)**

1 1.00 0.58
2 0.15 0.07
3 0.30 0.13
4 0.28 0.07
5 0.26 0.11
6 1.00 0.63
7 0.90 0.07
8 1.00 0.35
9 0.63 0.40

10 0.84 0.004
11 0.40 0.09
12 1.00 0.58
13 0.29 0.12
14 1.00 0.37
15 1.00 0.58
16 1.00 0.58
17 0.88 0.10
18 0.13 0.004
19 1.00 0.58
20 0.50 0.34

(*) using all 63 output variables, (**) using only 3 best.acceleration values to
estimate failure rate. Estimates were obtained using 500 random cases.

Version failure rates measured using all output variables, and using only the three most critical

variables (best acceleration values), are shown in Table 3.1. Note that the generally high failure

intensities stem from the fact that we used programs which have not been debugged in order to retain

the original mix of faults. The characteristics of different combinations of versions and variables are

summarized in Tables 3.2. We use standard deviation of the sample to show the extent of scatter of

component version failure rates around the sample mean value. Note that sets 14 and 16 are

NASA/NAG-1-983/Semi-AnnualReporff2.1/NCSU.CSC.(DFMA4AV)/Mar-90 14

reasonablywell balancedand showsmall samplestandarddeviation.Set 15 is set 14but with all
variablestakenintoconsiderationwhichincreasedthefailurerateandscatter.

Table 3.2 Combinationcharacteristics

Combination Versions Failure Rate per Version Variables
Mean SampleStD*

1 1-20 0.68 0.34 63

2 2-5,7,9-11,13,17,18,20 0.46 0.28 63

3 2,4,5,13,18 0.22 0.07 63

4 2,5,18 0.18 0.07 63

5 2,4,20 0.31 0.17 63

6 1-20 0.29 0.23 3

7 2-5,7,9-11, 13,17,18,20 0.12 0.12 3

8 2,4,5,13,18 0.07 0.04 3

9 2,5,18 0.06 0.05 3

10 2,4,20 0.16 0.16 3

11 2,4,7,10,18 0.04 0.03 3

12 7,10,18 0.02 0.04 3

13 7,10,18 0.62 0.43 63

14 3,5,11,13,17 0.11 0.02 3

15 3,5,11,13,17 0.43 0.26 63

16 3-5,13 0.28 0.02 63

(*) based on a sample of 500 random cases.

The measured coincident failure profiles for all the combinations are shown in Appendix III. The

limited number of test cases we have used to get the tables shown in Appendix I did not detect lAW

spans exceeding 5. However, the mix of faults and correlated failures that we produced just by using

a uniform random testing profile and by monitoring different output variables in different version

sets was sufficient to illustrate consensus voting effects.

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 15 --

The voting activity took place for each test case. The outcome was compared to the "golden"

answer and the frequency of voting successes and failures was recorded. The results are

summarized in Table 3.3.

Table 3.3 Frequency of voting events.

1 2 3 4 5 6 7 8 9 10

Success Freouencv

Best Version 434 434 434 434 42__._44 498 49__._88 498 498 466

2-of-N* 457 457 424 424 406 500 500 467 466 466

Majority 4 270 421 424 406 404 466 466 466 466

Consensus 450 450 423 424 413 482 482 466 466 466

Me.an_.Y.all

D-Space 11.9 4.7 1.7 1.3 1.8 5.9 2.2 1.2 1.1 1.4

Std. Dev. 0.10 0.08 0.04 0.02 0.03 0.17 0.05 0.03 0.01 0.02

Success Freouencv of CV Sub-Events

S-Majority 4 270 421 424 406 404 466 466 466 466

F-Majority 0 0 58 59 31 0 0 32 33 33

S-Plurality 435 169 2 0 0 77 16 0 0 0

F-Plurality 41 42 18 0 0 17 17 1 0 0

S-Random 11 11 0 0 7 1 0 0 0 0

F-Random 7 7 1 1 16 1 1 1 1 1

F-Fiat 2 1 0 16 40 0 0 0 0 0

F-Total 50 50 77 76 87 18 18 34 34 34

(*) Assuming that effective error output space has infinite cardinality, i.e. there are no coincident identical and wrong
answers from two or more versions.

We voted using majority, consensus and 2-out-of-n strategies. The last strategy had to be

simulated because effective output space was not sufficiently large for it to function properly on its

own. This was accomplished by checking, for each test case, the frequency of versions that were

NASA/NAG-1-983/Semi-AnnualReport/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 16

successful.If that frequencywas two or more, then in an ideal situationwhere all coincident

wronganswersrecordedfor thetestcaseareunique,2-out-of-nstrategywould havesucceededin

selectingthecorrectanswer.Thecountof thesehypotheticalsuccessesprovidedsimulated2-out-

of-n voting reliability bound.In thecaseof consensusvoting wealsorecordedthefrequencyof

sub-eventsthatyieldedtheconsensusdecision.

Table 3.3 (continued) Frequencyof voting events.

11 12 13 14 15 16

Success Freouencv

Best Version 498 498 434 454 354 372

2- of-N* 499 498 77 483 388 407

Majority 482 498 77 447 330 354

Consensus 482 498 154 476 379 412

 r.an.._Eala

D-Space 1,1 1.1 2.4 1.5 2.8

Std. Dev. 0.01 0.01 0.03 0.04 0.05

Success Freauencv of CV Sub-Events

1.8

0.04

S-Majority 482 498 77 447 330 354

F-Majority 18 2 174 0 27 26

S-Plurality 0 0 0 19 18 53

F-Plurality 0 0 0 16 2 34

S-Random 0 0 77 10 31 5

F-Random 0 0 143 7 74 14

F-Fiat 0 0 29 1 18 14

F-Total 18 2 346 24 121 88

(*) Assuming that effective error output space has infinite cardinality,
i.e. there are no coincident identical and wrong answers from two or
more versions,

NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 17 --

We recorded the number of times consensus was a successful majority (S-Majority), an

unsuccessful majority (F-Majority), a successful plurality 1 (S-Plurality), an unsuccessful plurality

(F-Plurality), a successful (S-Random) and an unsuccessful (F-Random) attempt at breaking a tie,

and a failure by fiat 2 (F-Fiat). By F-Fiat we mean a situation where a tie existed but all the classes

involved contained wrong answers so any choice made to break the tie led to failure. The sum of

S-Majority, S-Plurality and S-Random comprises consensus voting success total, while the sum of

F-Majority, F-Plurality, F-Random and F-Fiat is equal to the total number of cases where voting

failed (F-Total).

Another quantity which we measured was the average size of the decision space in which the

voters operated. For each test case we counted the number of different classes of outputs offered to

the voters. At the end we computed the sample mean and standard deviation of the sample and the

mean. The mean and its standard deviation are given in the table rows D-Space and Std. Dev.

respectively. The number of times the best version was correct was also counted (Best Version).

5OO

400

,_ 300

=o 200
g
o loo

0
0 2 4 6 8 10 12

Cardinality of Voter Decision Space

Figure 3.1 Influence of voter decision space cardinality: General trend.

1 One of the definitions given by the Webster's New Collegiate Dictionary for "plurality" is "a number of votes cast
for a candidate in a contest of more than two candidates that is greater than the number cast for any other candidate
but no more than half the total votes cast." If the number of votes cast exceeds half of the total votes then this

number is majority. In consesnus voting plurality corresponds to the situation where there is a uniqe maximum of
identical outputs but that maximum is not majority.

2One of the definitions given by the Webster's New Collegiate Dictionary for "fiat" is "A command or act of will
that creates something without or as if without further effort".

_ NASA/NAG- 1-983/Semi-Annual Report?2.1/NCS U.CSC.(DFM,MA V)/Mar-90 18

The success frequency of majority and consensus voting from Table 3.3 is plotted against the voter

decision space in Figure 3.1. Also plotted is the corresponding "best version" success frequency. It

is interesting to note that the plotted data sets are very mixed (number of versions varies, average

reliability per version decreases with increasing decision space, etc.) consensus voting always

performs as well or better than majority voting, and most of the time consensus voting performance

is close to that of the best version.

In Figure 3.2 we plot voter success frequency against average failure probability of an n-tuple

version. Again we note the general trend which shows that that consensus voting performance is

closer to the best version performance than majority voting.

_0

40O

300

200

lOO

1 8 Consensus l,.,,...

0 I f , "_
0.0 0.2 0.4 0.6

Average Version Failure Probability

Figure 3.2 Influence of average version failure probability: General trend.

In Figure 3.3 we plot the data for combinations which consisted of five versions only (n = 5). The

vertical axis is the normalized success frequency, i.e. ratio between the observed success frequency

and the frequency expected on the basis of the average version reliability. Note the smoothing of the

performance, and the fact that consensus voting performs very close to the 2-of-N upper bound but

in this case does not exceed that performance. It is obvious that the closer the decision space is to its

upper bound (of 5 in this cases), the better is the performance of consensus voting.

NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 19 --

1.4 RSDIMU: N = 5 Combinations ,/=

_ 1.3

,on
/ N-Consensu, ./_'/"

r._ 4 •

t
_ .1

_ 1.0

1 2 3

Cardinality of Voter Decision Space

Figure 3.3 Influence of decision space cardinality for a fixed n = 5.

Inspection of table 3.3 and the figures confh-rns that in many important respects consensus voting

behaves very much like its model based on failure independence in small output spaces predicts.

For example,

1. Consensus voting always offers reliability at least equivalent to majority voting. This is a sanity

check.

2. Consensus voting offers a higher number of successes than majority voting when the average

decision space in which voters work is sufficiently large. In the presented cases this is when

average decision space exceeds about 1.5. Particularly striking is the advantage consensus

voting has over majority voting in situations where the effective decision space is a large

fraction of the maximum decision space (e.g. combinations 1, 2, 6, and 13).

3. Consensus voting and majority voting perform worse, or no better, than at least one of

component versions in situations when the ratio between average version failure probability and

the sample standard deviation exceeded certain critical value (unmatched versions). For

example, the critical value is about 1.5 for failure probability of 0.6, but this ratio increased to

over 3 for average component failure probability less than about 0.2.

4. In the case of relatively well balanced versions (e.g. combinations 14, 15, and 16) consensus

voting does better than majority voting.

NASA/NAG-1-983/Semi-AnnualReport/2.I/NCSU.CSC.(DFM,MAV)/Mar-90 20

° Most of the time the 2-of-N voting represents an upper bound on consensus voting. However,

under special circumstances the fact that consensus voting attempts to randomly select an

answer even when there was only one answer per decision space category makes consensus

voting better than even 2-of-N voting (e.g. in combinations 5 and 16 consensus voting is better

than 2-of-N voting exactly by the count from successes deriving from random selection S-

Random).

6. Summary and Conclusions

We have used 20 functionally equivalent software versions to empirically investigate some properties

of consensus voting algorithm. Consensus voting provides automatic adaptation of the voting

strategy to varying component reliability and output space characteristics.

Our results indicate that in many important respects consensus voting behaves very much like its

model based on failure independence in small output spaces predicts. It is therefore conjectured that

because of its auto-adaptive nature, even in the presence of considerable failure correlation, reliability

performance of consensus voting is on the average better than that of any fixed agreement number

voting algorithm, and is most of the time far better than that of majority voting.

This is a preliminary report and complete analysis, including that based on randomly selected

n-tuples rather than special combinations, is underway. Recommendations will be given when the

full analysis has been completed.

References

[1] A. Avizienis and L. Chen, "On the Implementation of N-version Programming for Software
Fault-Tolerance During Program Execution", Proc. COMPSAC 77, 149-155, 1977.

[2] A. Avizienis and P.A. Kelly, "Fault-Tolerance by Design Diversity: Concepts and
Experiments", Computer, Vol. 17, pp. 67-80, 1984.

[3] R.K Scott, J. W. Gault and D. F. McAllister, "Fault-Tolerant Reliability Modeling", IEEE
Trans. Soft. Eng. Vol. SE-13, No. 5, pp. 582-592, 1987

[4] J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "A Large Scale
Second Generation Experiment in Multi-Version Software: Description and Early Results",
Proc. FTCS 18, pp 9-14, June 1988.

[5] K.S. Trivedi, "probability and Statistics with Reliability, Queueing, and Computer Science
Applications, Prentice-Hall, New Jersey, 1982.

[6] D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multiversion
Software Subject to Coincident Errors", IEEE Trans. Soft. Eng., Vol. SE-11(12), 1511-1517,
1985.

NASA/NAG-1-983/Semi-AnnualReportl2.1/NCSU.CSC.(DFM,MAV')/Mar-90 21

[7]

[8l

[9l

[10]

D.F. McAllister, C.E. Sun, and M.A. Vouk, "Reliability of Voting in Fault-Tolerant Software
Systems for Small Output Spaces", North Carolina State University, Department of Computer
Science, Technical Report, TR-87-16, to appear in IEEE Trans. Reliability, 1990.
R.K. Scott, J.W. Gault, D.F. McAllister and J. Wiggs, "Investigating Version Dependence in
Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984
P.G. Bishop, D.G. Esp, M. Barnes, P Humphreys, G. Dahl, and J. Lahti, "PODS--A Project
on Diverse Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 929-940, 1986.
J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of
Independence in Multiversion Programming IEEE Trans. Soft. Eng., Vol. SE-12(1), 96-109,
1986.

NASA/NAG-1-983/Semi-Annual Report/2.1/NCSU .CSC.(DFM,MAV)/Mar-90 22

Appendix I: Experimental environment

Empirical information on the consensus voting was collected using 20 functionally equivalent

programs developed in an earlier experiment [4]. The programs solved a problem in inertial

navigation. The requirement was to interpret and analyze part of sensor signals (accelerometers only)

received from a redundant strapped down inertial measurement unit (RSDIMU). It was also required

that the code be written in Pascal, and developed and tested in a UNIX environment on VAX

hardware. The problem specification was new, written for the experiment, and was not debugged via

a "pilot" version of the code, or prototyping, prior to the production of the redundant versions.

Following their unit testing all programs were subjected to an extensive acceptance test. In the

process over sixty distinct faults were identified among the versions. Less than 12% of the faults

exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as

many as 13 components. However, majority of these faults were trivial, and easily detected by

proper unit and/or system testing. System testing of the versions that followed acceptance testing

included over 1,000,000 simulated operational (flight) test cases and revealed several more faults. In

this paper we use the test case profiles that are effective for detection of the faults detected during

acceptance testing, and program versions that incorporate all the errors present just prior to

acceptance testing.

When making comparisons of version responses we used tolerances compatible with the accuracy of

the input data. All 11 output variables (63 individual values) were checked for each input vector. A

difference was signaled whenever any one of these values differed from the corresponding "golden"

value which was used to adjudicate the correctness of the answers. The "golden" program has been

very extensively tested and inspected on its own, and we believe that right now no faults remain in

that code. However, as has been the case in all the experiments published so far [e.g. 2, 8, 9, 10] we

have not proved the "golden" code correct. The results presented here were obtained using a

tolerance of 0.000244 relative (for 12 bits of input data accuracy) for real numbers larger than 0.1 in

magnitude, and 0.0000244 absolute otherwise (requirements specification assumed that the cockpit

display size was five digits), and 0 for integers.

For evaluation of consensus voting we used random data. The generation profile we used was

uniform over each individual variable. For each test case we generated a 21x20 response matrix.

Each element of this matrix contained a vector of 63 values describing the relationship between the

responses of a row version and a column version. The vector contained one entry for each variable

(or its part, if it was a compound variable) with 0 denoting agreement, and 1 disagreement between

NASA]NAG-1..983/Semi-AnnualReport/2.1/NCSU.CSC.fDFM,MAV)/Mar-90 23

the answers.Row zerocarried the responsesof the versionsto comparisonswith the "golden"
answers.We thencombinedthe analysisof thematriceswith the inspectionsof theactualresponse

values,andtheinspectionsof thecode.

Appendix II: Version and variable mix combinations

1. /_11 ou_tput values, and all versions. All 20 versions are involved in the voting. A version

disagrees with another version if any of the 63 output values disagrees with the corresponding

value from that other version. A version fails, with respect to golden version, if any of its 63

output values is in disagreement with the corresponding golden value.

2. All output values, but only 12 versions. When all output variables are considered, eight out of

20 versions failed in at least one variable for all test cases we used. The twelve versions chosen

for this cut were the ones that the testing profile we used exhibited failure probabilities less than

one.

3. All output values, but only 5 versions. High failure probabilities provide a very poor working

medium for majority voting. The five versions chosen for this cut were the ones that for all

output variables exhibited the five lowest failure probabilities.

4. ,_11 ou _tput values, but only 3 versions, choice I. The three versions chosen for this cut were the

ones that exhibited the three lowest failure rates when all output variables were considered in

comparisons.

5. All output values, but only 3 versions, choice II. The three versions in combination 4 showed

very high affinity towards triple coincident failures, about 18 times what would be expected by

random chance. We therefore selected a triplet which showed a lowered affinity towards

coincident failures.

6. Only three out-out values of the best acceleration estimates, but all versions. Best acceleration

vector was chosen illustrate the system behavior in the extreme where only the most critical

variable is considered. A version was declared as differing from another version only if one of

the best acceleration estimates differed from the other version's values by more than the

tolerance. A versions was declared as failed if any of its three best acceleration estimates differed

form the golden answers.

7. Only three outt_ut values of the best acceleration estimates, but 12 versions. The same 12

versions were used as in the second combination above.

8. Only three output values of the best acceleration estimates, but _ versions. The same versions

were used as in the third combination above.

-- NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 24

9. Only three output values of the best acceleration estimates, but only 3 versions, choice I. The

same versions were used as in the fourth combination above.

10. Only three output values of the best acceleration estimates, but only 3 versions, choice II. The

same versions were used as in the fifth combination above.

11. Only three ou _tput values of the best acceleration estimates, and 5 versions. This time we chose

the best five versions based on the failure rates observed using the three acceleration values.

12. Only three output values of the best acceleration estimates, and _ versions. We use the best

three versions based on the failure rates observed using three acceleration values.

13. All output values, and 3 versions. The same versions as in 12 above.

14. Only three ou _tput values of the best acceleration estimates, and 5 versions. This set of versions

was chosen so that the versions had similar failure rates using best acceleration estimates. This

set's average was about 0.11.

15. All output values, and 5 versions from 14 above.

16. All ou _tput values, and 4 versions, This set of versions was chose so that that the versions had

similar failure rates using all variables. This sets' average was bout 0.28.

Appendix III: Coincident failure profiles

In Tables A3.1 (a-d) we present the coincident failure profiles measured for the 16 combinations.

Column k denotes the k-tuple category. The rows represents the number of k-tuples in a particular

column class. Categories with k>0 refer to version tuples that have failed. For example, a 3-tuple is a

set of three versions. Category k=0 refers to programs that have not failed. Columns marked CF give

the observed frequency of coincident failure events. For a CF category, k=0 shows the observed

frequency of test cases in which none of the versions involved in the voting failed. For example, for

combination 3 (CF3) there are 259 such events over the 500 random test cases. The corresponding

IAW column gives the cumulative frequency of events where a correct answer was returned (out of a

possible total of n*500, where n is the number of versions). For category k=l the CF column

contains the frequency of test cases in which only one version out of n failed. The corresponding

IAW column contains the count of events where the version response to a test case was wrong and

unique. Note that there may be up to n such events per test case. For categories k>l each CF column

shows the frequency of test cases where k versions failed coincidentally for a test case. The

corresponding lAW columns contain the frequency of events where k versions failed with an

identical and wrong answer. Again note that several lAW k-tuples may be possible per test case so

long as the sum of their spans does not exceed n.

NASA/NAG-1-983/Semi-AnnualReport/E.1/NCSU.CSC.(DFM,MAV)/Mar-90 25

Table A3.1a Frequency of coincident and identical and wrong failures.

CF1 IAWI CF2 IAW2 CF3 IAW3 CF4

0 0 3216 0 3216
1 0 4664 4 1300
2 0 420 26 378
3 0 362 102 178
4 0 16 108 16
5 0 26 30 26
6 0 0 85 0
7 0 0 20 0
8 0 0 63 0
9 4 0 18 0
1 0 26 0 1 0
1 1 102 0 2 0
12 108 0 41 0
1 3 30 0
1 4 85 0
15 20 0
1 6 63 0
17 18 0
18 1 0
19 2 0
20 41 0

259 1945
129 317

33 19
3 32

29 26
47 0

IAW4 CF5 IAW5

353 1230 172 1036
71 152 234 402
29 59 52 31
47 0 42 0

Table A3.1b Frequency of coincident and identical and wrong failures.

k CF6 IAW6 CF7 IAW7 CF8 IAW8 CF9 IAW9 CF10 IAW10

0* 89 7123
1 79 2258
2 38 167
3 0 14
4 3 0

5 0 16
6 46 2
7 45 0
8 16 2
9 88 15
10 30 0
11 14 0
12 2 0
13 16 0
14 16 0
15 1 0
16 16 0
17 0 0
18 1 0
19 0 0
2O 0

137 5251
236 519

44 15
28 15

5 15
16 19
16 0

1 0
16 0
0 0
1 0
0 0
0 0

421 2318
44 79

1 3
1 31

32 1
1 0

446
20
33

1

1411
22
32

1

296
170

32
2

1260
174

33
0

-- NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 26

Table A3.1c Frequency of coincident and identical and wrong failures.

k CFll IAWll CF12 IAW12 CF13 IAW13

0 * 449 2395
1 16 17
2 17 17
3 17 18
4 1 0
5 0 0

466 1463 46 564
32 33 31 588

1 2 364 174
1 0 59 0

Table A3.1d Frequency of coincident and identical and wrong failures.

k CF14 IAW14 CF15 IAW15 CF16 IAWI6

0* 350 2226 42 1433 234 1436
1 97 208 176 898 120 418
2 0 33 112 44 53 34
3 36 0 58 27 34 26
4 16 0 67 0 59 0
5 1 0 45 0

NASA/NAG-1-983/Semi-AnnualReport/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 27

Modeling Execution Time of Multi-Stage N-Version
Fault-Tolerant Software 3

Mladen A. Vouk, Amitkumar M. Paradkar, and David F. McAllister

North Carolina State University
Department of Computer Science, Box 8206

Raleigh, N.C. 27695-8206

Tel: (919)-737-7886
Fax: (919)-737-7382

e-mail: vouk@cscadm.ncsu.edu

Abstract

N-version systems may be subdivided into stages for the purpose of forward error recovery

through voting after each stage. The simplest is the approach where all components in a stage have
to furnish their results before the vote takes place and the execution continues. An obvious problem
with this approach is that the whole system waits for the slowest version to finish before a result is
furnished. A better solution is to use a scheme we call Expedient Voting in which the voting takes
place as soon as an adequate number of components have finished the stage. The concept of a

"runahead" is introduced -- the faster versions are allowed to run ahead of the rest of the slower

versions by one or more stages, with synchronized re-start in the event of a failure. If the difference
between the fastest and the slowest successful components in each stage is large, the versions are
highly reliable, and the failure dependence is small, then the execution speed-up that Expedient
Voting yields for successful may be substantial. The speed-up decreases for runaheads over about 3
stages, and also deteriorates with reduction in the version reliability and independence. The
advantages and the limitations of using Expedient Voting are discussed.

Key Words: Software fault-tolerance, multi-stage voting, Expedient Voting, execution time
performance, Community Error Recovery.

1. Introduction

The issue of reliability and safety has assumed great importance in the design and implementation of

software. Basically, there axe two approaches to assuring adequate reliability of software during its

operation. One is fault-avoidance and fault-elimination prior to release of the software, and the other

is fault-tolerance in the operational phase.

There are two major schemes for implementing fault tolerance in software viz. Recovery Block

[Ran75] and N-version programming [Avi77, Avi85]. The former uses a primary module, an

3Research supported in part by NASA Grant No. NAG-I-983

NASA/NAG-1-983/Semi-AnnualReport/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 28

acceptance test and (N-l), usually sequentially executed, alternate modules developed

independently. The latter requires N independently developed versions, which usually run

concurrently, with results from all compared and voted upon to select the correct answer. There

are also hybrid schemes that employ combinations of the above two schemes, e.g. Consensus

Recovery Block [Sco87].

The reliability and execution time performance of the basic software fault-tolerance schemes has

been extensively studied. For example, Grnarov and Avizienis [Grn80] used queuing models for

performance evaluation of both Recovery Block and N-version programming schemes, Laprie

[Lap84] developed a Markov model for the Recovery Block, Eckhardt and Lee [Eck85] and

Littlewood and Miller [Lit87] developed probabilistic models for analysis of the effectiveness of

multi-version software subject to coincident failures, and Deb and Goel [Deb86, Deb88] used

Markov chain models to arrive at closed form solutions to various system parameters, such as the

reliability and the mean time spent in a system, and analyze the performance issues involved in the

recovery block (RB) and N-version (NV) strategies.

The N-version approach is expected to mask design faults through the consensus of results from

N > 3 diverse versions. Unlike hardware failures, software failures are usually input dependent

and a faulty version may work quite well in segments, and with other than the inputs from its fail

set [Mus87]. It can, thus, retaining the capability for masking failures of other components over

faults that are not common. The key to re-use of versions, in full or in segments, is an error

recovery scheme which transforms the erroneous state of a failed version to an error-free state from

which normal executions can continue.

A mechanism that uses staged local and global forward error recovery has been proposed by Tso et

al. [Tso86, Tso87]. Their method is called Community Error Recovery (CER). It assumes that at

any given time during execution there exists a majority of good versions which can supply

information to recover the failed versions. Each version is subdivided into stages and either a CER

check-point or a recovery point is established after each stage. At each CER point every version

submits its state vector to a supervisor which oversees the execution of the versions, compares their

results, and decides on the correctness of the intermediate states. The result of the decision is sent

back to the versions judged incorrect in order to initiate their recovery. The error recovery is fully

effective only if a minority of versions fail between two successive CER points, and if all the state

variables that are not part of the state vector are not corrupted. If there is no consensus among the

versions, recovery will not be performed and the system will be shut down safely. If a majority of

versions produces similar errors at the CER point, then the minority of good versions will be

i

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 29

forced to an erroneous state. The usual, and controversial, assumption is that the likelihood of such

an occurrence is small.

Most of the analytical work in the area of performance of N-version software systems has been

done for single-stage systems, i.e. systems equivalent to only one CER check-point, while

multi-stage systems have been investigated to a much smaller extent. For example, Deb [Deb88] has

suggested a method to compute the execution time requirements of a staged system, where each of

the stages may be implemented as a recovery block or an N-version model. The analysis was

carried out for the case where the voting takes place and execution continues only after all the

components in the stage have furnished their results. Tso et al. [Tso86] developed Markov

reliability models for the CER scheme, and more recently, Nicola and Goyal [Nic90] analyzed the

effect of inter-version failure correlation on the reliability performance of Community Error

Recovery.

In this paper, we study multi-stage N-version software timing performance for a forward error

recovery scheme we call Expedient Voting (EV). In section 2 we discuss the multi-stage N-version

model. In section 3 we describe and analyze the Expedient Voting scheme. Expedient Voting takes

place as soon as an adequate number (e.g. majority) of components have finished the stage.

Furthermore, the faster versions are allowed to run ahead of the rest of the slower versions by one

or more stages, with re-start from the synchronization stage in the event of a failure. We show that

in some situations EV may considerably improve execution time of staged systems. For example,

given low inter-version failure dependence and exponential execution time of version stages,

simulations show that Majority EV can produce results two or more times faster than a scheme

where all stage elements are required to furnish their results before the vote takes place and any

execution continues. We also discuss conditions under which there are minimal or no speed-up

gains. Results of simulation experiments on EV are presented in Section 4. Summary and

conclusions are given in Section 5.

2. Multi-Stage Model

A true concurrent N-Version programming strategy for software fault-tolerance requires N

independently developed but functionally identical programs running in parallel. We use each of

the N programs as monolithic units, or modules, and vote on the output without taking into

account the intermediate program values (or states) [AVI 77]. This scheme may improve the overall

system reliability over that of a single component, provided certain conditions are met [Tri82,

Eck85, Lit87]. An alternative scheme is subdivision of each version into segments, and testing for

NASA/NAG-1-983/Semi-AnnualReport/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 30

correctnessof the intermediateresultscomputedby eachsegment[Tso86,Tso87, Deb88].These,

supposedly, correct values can then be passed on to the remaining stages. The two strategies are

illustrated in figures 1 and 2.

_ Final Results

Figure 1. Single-stage l xN system

The following terminology will be used in the remainder of the paper:

- element denotes one of the M version segments in a M-by-N (or MxN) system.

- stage denotes a 1-by-N horizontal slice of a M-by-N system.

- version denotes a M-by- 1 vertical slice of a M-by-N system.

2.1 Reliability of a Multi-Stage System

Reliability of Community Error Recovery has been investigated theoretically [Tso86, Nic90, Par90]

and experimentally [Tso87]. Nicola and Goyal [Nic90] results indicate that the effectiveness of the

technique is highly sensitive to, and easily degraded by, errors in CER check-points and inter-

version failure dependence, particularly when very high system reliabilities are targeted (e.g.

0.99999 or more). CER is more robust at lower target system reliabilities [Par90].

Consider a multi-stage N-version software system in Figure 2. Let, for tractability, p be the success

probability (reliability per test case) of each of the M times N elements comprising this system,

where M is the number of stages, and N is the number of versions. Let decision on the correctness

of the intermediate results be derived by voting. Since voting is carded out after each stage, what at

each stage are believed to be the correct results are passed on to all subsequent stages. If inter-

version failure independence is assumed, it can be shown that the reliability, RMS, of this MxN

system for an arbitrary (m-of-N) voting approach is

-- NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 31

I First Voting Stage I

_ _Third _Votin_iStag__ e I

I

I

(M-l)st Voting Stage

Final Voting Stage

Final Results

I

Figure 2. Multi-stage MxN system

1M
j=m

(1)

where R s is the reliability of a single-stage (including the check-point), Rc is the probability that the

stage check-point operates correctly and also correctly resets any failed versions [Par90, Nic90],

and m is the number of versions that have to agree on a result before it is accepted as correct. Again

for tractability we have assumed that R c is same for all check-points. We will also assume that p is

sufficiently large so that single-stage reliability, R s, is larger than p [Tri82]. For Two-of-N Voting

NASA/NAG- 1-983/Semi-Ann ual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 32

m = 2, and for Majority Voting m = "2_2)z-2-'], where m is the agreement number and ["] denotes

the ceiling function. Voter imperfections (Re < 1), and inter-version failure correlation, reduce the

overall system reliability, and for high p values can easily make RMS worse than the reliability

offered by an equivalent single-stage system [Nic90].

This is illustrated in Figure 3 where we compare the ideal (Rc = 1, and no failure correlation)

reliability gain offered by a 3x3 multi-stage system, the ideal reliability of an equivalent lx3

monolithic system 4, the ideal reliability of an equivalent single-stage one version system (Rssl=p3),

and the reliability of a 3x3 system where Rc = 0.9 but there is still no correlation. The effect of

correlation can be simulated through the single-stage single-version system curve. One possible

extreme case of failure correlation is when all elements in a stage fail coincidentaUy with identical

(and wrong) answers, but with negligible inter-stage failure correlation. The reliability behavior is

then similar to that of a single-stage single version system. Under ideal conditions, the more stages

there are, the higher the gain offered by a multi-stage system. In reality, voter imperfections, voter

execution overheads, and failure dependence, will dictate the optimal placement and number of

stages [Nic90, Par90].

1.0

0.8
°m

°m

,,Q

o4

'_ 0.6
=¢

>.,.

0°4'

0.2'

0.0

0.0

Majority Voting

(ne gli gible failu re Dependence) /"_ __)l(---_
jr" J-_F/

A 3x3 System /'- _ /_

w,th.moe.ec. ./ fi //\
Voter (Rc=0.95) _ /- //I . . ? ^ . I

/" IA lxt SYs*emI
• _ / J" I also 100% I

A 3x3 System with //" /,7 l Correlation withl

/_ ._" /_ A ?x3_ System
with Perfect Voter

- - 7,. - Ir- , , , , , ,
0.2 0.4 0.6 0.8 1.0

Element Reliability

Figure 3. Illustration of the Reliability of Multi-Stage N-Version Software

N

4 RSS = Z

j----ITI

NASA/NAG- 1-983/Semi-Annual Report/2. I/NCSU.CSC.(DFM,MAV)/Mar-90 33

From Figure 3 we see that even small imperfections in the check-point mechanism can drastically

degrade reliability of a multi-stage system. Similarly, correlation will reduce the effectiveness of the

approach and, in combination with voter imperfections, may make the system performance worse

than that offered by an equivalent single-stage one version system.

Experiments indicate that under current software development strategies it is quite likely that at least

some of the residual faults in multi-version software will be correlated [Bis86, Kni86, Shi88,

Avi88, Bis88, Vog88]. However, the prevalence of these faults and the degree of correlation

remain an issue of considerable controversy. Experimental information on the reliability offered by

CER is sparse and mixed. Results from a partial analysis [Tso87] of the functionally equivalent

software developed in a multi-version experiment [Kel88] indicate that the approach can be

successful, at least in part, in increasing reliability of medium to high reliability versions. On the

other hand, analyses using a model based on Knight and Leveson [Kni86] data and reported in

[Nic90] paint a far grimmer picture of the effectiveness of CER in the face of inter-version failure

dependence, and check-point imperfections.

However, in truly parallel computing environments, under conditions of (very) low correlation

inter-version failure correlation, high check-point reliability, and with appropriate voting scheme a

multi-stage N-version system may not only be more reliable than an equivalent, more traditional,

single-stage system, but it may also be run faster [Par90]. We now explore the latter possibility.

3. Execution Time Model

In this section we discuss analytical models for the times to completion of multi-stage N-version

fault-tolerant software. For tractability, the analytical solutions are derived under a set of

simplifying assumptions. The behavior of the model under less restrictive conditions is discussed.

The assumptions are:

.

.

3.

.

Probability of success, p, of each of the M times N stage elements is a constant, i.e., p

does not change with time.

The program output space cardinality is inf'mite.

The probability of m elements producing identical and wrong answers is negligible, i.e.,

agreement between the required number of elements implies correctness of the results.

The stage check-points are perfect (Rc=l).

NAS A/NAG- 1-983/Semi-Annual Report{2. I/NCSU.CSC.(DFM,MAV)/Mar-90 34

.

.

.

8.

Time taken by the voting algorithm is negligible compared to the execution time of each

stage element.

The restart and recovery time in the case of a failed element is negligible compared to the

execution time of each stage element.

The execution times of each of the M times N elements are independent of each other.

The software runs on a dedicated multi-processor hardware which has no other tasks to

perform.

3.1 A Numerical Example

To motivate the analysis and illustrate the principles we will first discuss a numerical example.

Consider an N-version fault tolerant software system with M stages as illustrated in Figure 4. The

numbers inside the circles (stage elements) are the times required for each element to produce its

results. The zeros or ones beneath each element represents the failure (0) or success (1) of the

corresponding element.

In the simplest case we would wait for all the elements to produce their results before we start

voting with them. In this situation the time required before the results are available at each stage is

the time required for the slowest element in each stage. The time required before final results are

available is obviously the sum of the times for each stage. In the example shown this time is given

by the sum (150 + 170 + 160 + 100 = 580). Obviously, this scheme is very inefficient.

In fact, under our assumptions we can actually proceed with the voting as soon as first m

components have produced their results (e.g. m is the majority, provided majority voting is used;

otherwise whatever agreement number is used). If there is a failure among the fLrst m components,

we must wait for the (m+l) st module to produce its results before voting can produce a decision

based on, say, majority, and so on. Thus we can vote on available results as soon as the sufficient

number of correct results is available. In the example, the fastest element also yields wrong results,

so the voter can make a decision only after the fourth element has f'mished running. This eliminates

the need to wait for the fifth element to produce its results. The application of this scheme

produces results from the f'trst stage in time (125). The total time is the sum of times for each stage,

so the final results are available in the time (125 + 100+100+85---410).

It is obvious that this scheme offers a saving of (580 - 410 = 170, or -30%) time units over the

previous one without sacrificing the reliability of the system. In the worst case, we have to wait

- NASA/NAG- 1-983/Semi-Annual Report/2. I/NCSU.CSC.(DFM,MA V)/Mar-90 35

for the slowest component to produce its results, i.e. for (N-m-l) failures in prior (N-l) versions.

For highly reliable systems, probability of such an event is expected to be very small. We call the

above scheme Expedient Voting (EV). If correctness decision is based on the majority we will call

the scheme Majority EV. Similarly, we can have Two-of-N EV.

First Voting Stage [

Se nd Voti _el]

/

d Voting

/
1 I I

ge

_ Final Results

Figure 4. A 5x4 system with timing information.

Expedient Voting can be further improved. We have assumed that each of the N processors in the

system is dedicated to the same version of the current software till the task is finished. Given this,

the fastest (m - 1) processors in each stage are idle and waiting for the slower processors to finish

the job. For example, element 1 in stage 1 with time requirements of 50 units is waiting for other

processors to produce their results. Assuming that the results from this element are correct, we can

let this version run ahead with the next computational stage for 35 time units, the time available

NASA/NAG-1-983/Semi-Annual Reportf2.1/NCSU.CSC.(DFM,MAV)/Mar-90 36

before the second fastest component in stage 1 produces its results. This reduces the time

requirements of this version in the second stage from 85 to 50.

In this example the results produced by the first component in the first stage are wrong, so there is

no advantage in letting it run ahead as it will need to be re-injected with the correct values after the

first voting stage and re-started. But the advantages with high reliability versions, in general,

should be apparent. The faster processes can be allowed to continue on to the next stage,

temporarily assuming that their results for the current stage are correct. If later on it is found that

these elements did produce correct results, they already have a head start for the next stage. On the

other hand, if they are found to be wrong by the voting station, they can be restored to 'correct'

state, and re-started at the beginning for that stage. It should be noted that the overhead is

minimized because the assumption is that the processor would be idle anyway. Only the supervising

module has to keep track of the status of each processor and restore its states if its results from the

previous stage are found to be wrong.

The above scheme can restrict the 'synchronization' of each processor to either every other stage, or

can impose no restriction on how far ahead a version is allowed to execute. The times for

completion for one synchronizing stage (one runahead), are illustrated in figure 5. The time

required for the fh'st stage is 125 because we still need to wait for the majority to furnish correct

results. But, since component number 4 produces its results in 85 units, its version has

(125 - 85 =) 40 units of spare time. It can proceed with stage number 2 and dedicate these 40

units towards stage 2. This reduces the time for stage 2 from 40, as would be required without the

runahead, to 0. Similarly, time required for version 3 in stage 2 reduces from 100, to 100 - (125-

100) = 75. Thus, the revised time vector for stage 2 looks like (85, 85, 75, 0, 170), and the results

for stage 2 are available in 85 instead of 100 time units. Since, only one stage 'runahead' is

allowed, the same process is repeated from stage 3 and faster versions in stage 3 are allowed to run

further into stage 4. With this scheme, the times required for stage 3 stay at 100, but the revised

time vector and the revised time for stage 4 are (50, 35, 30, 85, 50) and 50, respectively. Thus,

the total time taken is (125 + 85 + 100 + 50 = 360). It can be seen that although the savings are not

very large, they are there nevertheless, and in some applications may be important.

In this example, there is nothing to be gained by letting the versions run beyond one stage before

synchronization is carried out. For example, both versions 4 and 3 in stage one, with excess

times of 40 and 25 units respectively, have these spare times used up in stage 2. So there is no

excess time available to nan ahead in stage 3.

-- NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 37

First Voting Stage

/
I

1 1 l 1

I

_/ Voti 1

/ /

Final

Figure 5. The Figure 4

Voting Stage

_ Final
Results

system with timing information appropriate to Majority Expedient

Voting with one stage runahead.

But, were the time required for the fourth version in the second stage reduced from 40 to 30, an

additional 10 time units would be available in stage 3. These 10 units can be applied towards the

execution of the third stage and there would be a net gain of 10 units. It thus reduces the time

requirement for version 4 in stage 3 from 125 to 115. With two stage synchronization (all the

versions are allowed to go up to 2 stages ahead) the time taken for the final results is 350 units.

Even if there is an overhead in restoring the system states for failed versions, it can be seen that

there can be savings with such a scheme.

NASA/NAG- 1-983/Semi-Annual Reportf2.1/NCSU.CSC.(DFM,MAV)/Mar-90 38

3.2 Simple Voting Solution

Assume an MxN system as described in section 2.1. Let the execution times for each element within

a stage be represented by mutually independent, identically distributed continuous random variables

ti,j, each having distribution function F (t), where tij refers to the element of version j in stage i (1 <

j < N). Let the execution time vector for a stage i be denoted by Oi(t) = (ti,1, ti,2, ti,N). Let

Ti,1, Ti,2, Ti,N be random variables obtained by permuting the set Oi(t) so as to be in increasing

order. To be specific: Ti,1 = min {Oi(t)}, Ti,N = max {Oi(t)}, etc. The random variable Ti,k is

then called the k th order statistic [Tri82].

Let the distribution function of Ti,k be denoted by FTi,N(t). Let P{... } denote probability of event

{... }. From [Tri82] it follows that

FTi.N(t) = P{Ti,k < t} = P {'at least k of the tij's in a stage lie in the interval (0,t]'}

N

= X (N) FJ(t'[1-F(t']N-J , 0<t <o,,. (2)

j=k

We now compute the time required to complete each stage when all N versions are allowed to

finish before voting is performed. The time needed by each stage is the time needed by the slowest

version, or it is the maximum of the times needed by each version in that stage. Let the symbol xi

denote the completion time for stage i. Note that we have assumed that at each stage the time taken

by the voter, and other overhead, is negligible compared to xi. Hence, xi, is given by Ti,N of Oi(t).

Thus, from equation (2), the distribution function of FTi.N is

FTiM(t) = [F (t)] N 0 < t < oo.

Before we continue we will make one more simplifying assumption, that F (t) is exponential with

parameter _. In reality element execution time distributions may not be exponential. We discuss that

in Section 4 and show how, for example, Uniformly and Normally distributed execution times

affect the results.

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 39

If F(t) is exponential then, according to Theorem 3.5 in Trivedi [Tri82], FTi,N(t) is hypoexpontial

with parameters [NX, (N - 1)k IO. k]. Its expected value is

and its variance is

N

a=l

N

ELE [FTiN(t)] = aX'

a=l

(3)

The total time required before the final results are available after M

M

stages is the sum of the times required in each stage { E'¢i}, SO the expected value of total time
i=l

required is
M

N N

EE 1 E'aX -M X"

i=l

(4)

Since we have assumed that the execution times of different stages are independent from each other

the variance is

M
N N

E_ 1 _ 1
(a_) 2 - M (a_.)2 .

i=l

(5)

It should be noted that this completion time does not depend on success or failure of any individual

stage since the results are voted upon only after all the versions in that stage have produced results.

This completion time does not depend either upon the voting strategy used (Majority-of-N or

Two-of-N), or on the individual version reliability. However the fraction of time devoted to

successful stage completions will be (3) multiplied by the probability that the stage succeeds.

m

NAS A/NAG- 1-983/Semi-Annual Reportf2.1/NCSU.CSC.(DFM,MAV)/Mar-90 40

3.3 Expedient Voting Solution.

As described in the numerical example, it is not necessary to wait for the slowest component to

furnish its results before voting can take place. As soon as the number of components that have

finished is equal to, or larger than, the agreement number required by the chosen voting strategy,

voting can take place and an attempt can be made to ascertain the correctness of the received results.

If all results agree, it is not necessary to wait for the remaining components to finish running.

Instead, the consensus solution can be injected into subsequent stage elements immediately, and the

next stage started 5.

For example, consider Majority Voting given that the fastest m th component is correct, and that

there are no failures in the previous (m-l) versions. Then the time required for the completion of

stage i is given by Ti,m of Oi(t). This event will occur with probability pm because all the fastest m

versions need to be successful, and we have assumed inter-version failure independence, and equal

probability p of success for all elements. If exactly one version fails among the fastest m versions,

but the (m+l)St version is successful, then the stage can be completed in Ti,m+l of Oi(t). There are

m different ways this event can occur. So the probability of this event is mpm(1-p). From this, a

more general expression for the probability of an event where exactly j failures occur in the fastest

(m+j-1) versions and the (re+j) th version is successful, is:

(mjj-1)(p)m(1-p)J .

It can be seen that 'q, the time required for the stage i to succeed, is a random variable which takes

on the values Ti,m+j with the following probability:

P{'_i = Ti,m+j} = (mjj'l)(p)m(1-p)J, O< j < N-m,

= O, otherwise.

(6)

Hence, the expected value E [xi] for successes is :

N-m

Z { E[Ti'm+J] (mjj-1) (p,m(1-p)j } (7)

j--0

5Note that under our assumptions this procedure is safe for both Two-of-N voting and Majority Voting because the
probability of identical and wrong answers is zero. In practice this may not be the case, and only Majority Voting
may be acceptable from the safety standpoint.

_ NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 41

In all other situations (i.e. when the number of failures is such that m cannot be reached), the stage

will wait for all versions to complete before a failure is declared 6. The probability of this event is the

probability that the stage will fail, i.e. (1-Rs). If F (t) is exponentially distributed with parameter 7L,

then Ti,m+j is hypoexponentially distributed with (m+j) parameters [Tri82]. Its expected value is
N

1_-, and (7) transforms into

a=N+l-m-j

N°m

£f N+_lm-_ (m+j-1)'"J)J}
E [Xi] = (p)m(1-p

a= - -

j=0

(8)

Because Oi(t) is a vector of continuous random variables, then Ti,1 < Ti,2 < ... < Ti,N with

probability one [Tri82]. Furthermore, because the maximum completion time (3) is part of only one

term in (8), and is otherwise associated with stage failure probability (1-Rs), it is obvious that

successful Expedient Voting will, in general, produce results faster than the simple voting

approach. For small values of p, however, it becomes more likely that all versions will have to be

executed before a voter can make a decision, i.e. the most significant terms become the j=N-m in

(8) and the stage failure term. Inter-version failure correlation has a similar effect. In practice

however, we are usually only interested in the expected time required per successful stage because

failure of any stage implies complete failure of the system. Furthermore, the stage check-points, re-

starts and recovery will all add to the overhead of implementation and execution of the EV scheme.

If the difference between the average per stage execution times of the simple voting solution (3) and

the Expedient Voting is considerable, then it may outweigh the overheads and make the approach

worthwhile. If version reliabilities are poor, then we could expect an increased number of re-starts,

as well as a need to often wait for all versions to finish before a sufficient number is available for a

voter decision.

6An alternative might be a slrategy which preempts further execution, and fails the system or initiates a higher level
recovery, once the number of yet unexecuted stage elements is not sufficient to make up the desired m even if they
all succeeded.

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MA V)/Mar-90 42

4. Simulation

In order to validate analytical solutions and study situations not covered by them, we built a

simulator for a multi-stage N-version system composed of elements of known success probability

and execution time distribution. Unless stated otherwise, all examples shown below were run
1

assuming exponentially distributed execution times with parameter Z = 3---_" A typical simulation

run was 500,000 cases long, and only the successful cases were considered in the timing statistics.

The theoretical and the simulation results for the simple solution and EV with zero runaheads were

identical within the error of simulation.

4.1 Expedient Voting with Runahead

Figure 6 shows the execution times for a 10x5 system against the number of runahead stages

allowed for two element reliabilities of p--0.999 and p=0.55. At each stage the decision is made

based on the majority (of N) agreement. A value of -1 for runahead stands for the simple voting

solution where all version complete before voting takes place. The value of 0 denotes Expedient

Voting with no runahead. The value of 1 means that the fastest version is allowed to execute only

one stage ahead of the rest of the versions, and then it has to wait for the results from other

versions to be made available for voting, and so on. This notation is used in all figures.

E

C
O

o_

m

Q.

E
O
O

7000

6000

5OOO

400O

3000

20O0

1000

Simulation

Majority (Expedient) Voting

10 Stages, 5 Versions

/ p : 0.55

-2 0 2 4 6 8 10

The Number of Runahead Stages

Figure 6 Majority Expedient Voting with and without runahead.

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 43

As is to be expected, Figure 6 confirms that the simple voting solution (-1) does not depend upon

the individual component success probabilities. The completion times are about 3 times larger than

with Majority Expedient Voting at p=0.999, and about 1.5 times at p--0.55. A runahead of one

increases the difference by a further 10%. The savings in time thereafter diminish rapidly, and there

is virtually no gain after a runahead of 4 or 5 stages. This is also an anticipated result because the

excess time available for the fastest versions quickly diminishes with longer runaheads. Another

expected result is that for each runahead the completion times increase with the decrease in single

component success probability. As the single component success probability decreases, the

probability increases that more versions are needed before majority agreement can be achieved, so

the voter waits longer before furnishing its decision.

800

t_

¢/)

0. 600

o
E

I--

0 400
o_

E
0

2O0
0

m
ID

0

Majority (Expedient) Voting

p = 0.999

3 Versions

5 Versions

7 Versions/

-1 0 1 2 3 4

The Number of Runahead Stages

Figure 7 Majority Expedient Voting with and without runahead.

To consistently compare the effect of the number of versions, N, on the execution times we

compute the average times required per stage. These values are plotted in Figure 7 for element

success probability of 0.999. For the simple voting solution (- 1) the average time required per stage

increases with the number of versions. This is to be expected because these times represent the

maximum of 3, 5, and 7 independent and identically distributed random variables, and the

probability of the maximum of 7 variables being larger than the maximum of 3 variables is higher.

The situation is reversed with Expedient Voting. The larger the number of versions employed, the

NASA/NAG- 1-983/Semi-Annual ReporU2.1/NCSU.CSC.(DFM,MAV)/Mar-90 44

faster are the results produced because the more likely it is that the requisite number of versions will

agree. However, the differences in favor of larger N are not very big, and reduce further for

smaller p values.

Simulations of Two-of-N Expedient Voting show trends similar to those exhibited for Majority EV

except that the differences between the simple and Expedient Voting are more pronounced because

the results are usually available as soon as the second fastest version finishes.

4.2 Influence of Execution Time Distribution

7ooi Majority (Expedient) Voting
600

¢/)

_Q. 500 \
_= 40o "Broad" Uniform

g 300
]

_" 2o0 t _ "Broad" Normal/

lOO
-2 -1 0 1 2 3 4 5

The Number of Runahead Stages

Figure 8. Influence of the element execution time distribution function on the stage completion

times.

To influence of different execution time distribution functions is illustrated using the Normal and the

Uniform distributions. In the following examples the average execution time (it) is 300 time units.

Figure 8 shows the average one stage execution times for a 5x5 system using variances which give

in "broad" or spread-out distributions, i.e. Exponential (It = 300, t_2 = 90000), Normal (It = 300,

O 2 = 300), and Uniform (It = 300, minimum = 0, maximum = 600). Agreement number is

majority of N, and p is 0.999. We see that the exponential distribution results in the longest stage

times when the simple voting scheme (-1) is used. Uniform distribution, partly because of the a

ceiling on its maximum, results in the shortest times. Normal gives intermediate results. With

Expedient Voting all three distributions show substantial reductions over the simple voting. But,

-- NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 45

because the Normal and the Uniform distributions have smaller differences between the average

minimum and maximum values than the Exponential distribution has, they also offer smaller time

savings with EV.

An interesting effect can be seen when, for the same average values, the distribution variance is

made considerably smaller, i.e. for the Normal (_2 = 10) and for the Uniform (minimum = 270,

maximum = 330) distributions. The results are summarized in Figure 9. The increased localization

of the element execution times around the mean reduces the effective difference between the

minimum and the maximum execution times within a stage. With simple voting this results in a

substantial drop in the average times per stage for both the Normal and the Uniform distributions.

In fact, there is not much difference between the timing requirements for simple voting and

Expedient Voting with or without runaheads. This shows that in some practical situations the EV

scheme may not be faster, even with high reliability high-independence versions, because this small

difference could be easily annulled through voter imperfections, and low, but not negligible, voter

and re-start execution overheads.

G)

m

rJ_

t._

t,n

if)

E
iJ

j-.

t-
o

,m

_o
Q.
O

O

800

600

400

200

Majority (Expedient)

• Exponential

• Uniform (narrow)

[] Normal (narrow)

Voting

-1 0 1 2 3 4

The number of Runahead Stages

Figure 9. Influence of very localized element execution time distribution function on the per stage

completion time.

NASA/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 46

The principal factor governing the speed-up is the average difference between the minimum and the

maximum element execution times per stage. If the difference is small, then the savings in time

provided by Expedient Voting (with or without runaheads) may be negligible.

5. Conclusions

We have analyzed the timing performance of N-version multi-stage software for a strategy we call

simple voting and a strategy we call Expedient Voting. In simple voting all components in a stage

have to furnish their results before the vote takes place and the execution continues. In Expedient

Voting the voting takes place as soon as an adequate number of components have finished the stage.

In EV the faster versions may be allowed to mn ahead of the rest of the versions by one or more

stages, with synchronized re-start in the event of a failure. The principal conclusions that can be

drawn from this study are:

Expedient Voting scheme may produce the final results faster than simple voting. The

speed-up gain is a function of the difference between the fastest and the slowest elements in

each stage, and of the reliability of stage elements. If the difference between execution of

successful stage elements is large then the gains are substantial. The difference is governed

by the "spread" (i.e. variance) of stage element execution time distributions. The speed-up

advantages of EV over simple voting diminish as version reliability reduces.

Expedient Voting scheme may be coupled with version runaheads. This variant may

produce and additional speed-up, but this gain decreases rapidly for runaheads exceeding

about 3 stages.

The authors are attempting to find solutions for systems with small output spaces, and in the

presence of correlated and coincident failures. They are also investigating the incorporation of voter

timing and rollback overhead on the results, and plan to experimentally verify above results in a

true multiprocessor environment.

References

[Avi77]

[Avi85]

A. Avizienis and L. Chen, "On the Implementation of N-version Programming for
Software Fault-Tolerance During Program Execution", Proc. COMPSAC 77,
149-155, 1977.

A. Avizienis, "The N-Version Approach to Fault-Tolerant Software," IEEE
Transactions on Software Engineering, Vol. SE-11 (12), pp 1491-1501, 1985.

- NAS A/NAG- 1-983/Semi-Annual Report/2.1/NCSU.CSC.(DFM,MAV)/Mar-90 47

[Bis86]

[Bis88]

[Deb86]

[Deb88]

[Eck85]

[Gin80]

[Ke188]

[Kni86]

[Lap84]

[Lit87]

[Mus87]

[Nic90]

[Par90]

[Ran75]

[Sco87]

[Shi88]

[Tri82]

[Tso86]

[Tso87]

[Vog88]

P.G. Bishop, D.G. Esp, M. Barnes, P Humphreys, G. Dahl, and J. Lahti, "PODS--A
Project on Diverse Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 929-940, 1986.
P.G. Bishop, and F.D. Pullen, "PODS Revisited--A Study of Software Failure
Behaviour", Proc. FTCS 18, pp 2-8, June 1988.
A.K. Deb, and A.L. Goel, "Model for Execution Time Behavior of a Recovery Block,",
Proc. COMPSAC 86, 497-502, 1986.
A.K. Deb, "Stochastic Modelling for Execution Time and Reliability of Fault-Tolerant
Programs Using Recovery Block and N-Version Schemes," Ph.D. Thesis, Syracuse
University, 1988.
D.E. Eckhardt, Jr. and L.D. Lee, "A Theoretical Basis for the Analysis of Multi-version
Software Subject to Coincident Errors", IEEE Trans. Soft. Eng., Vol. SE-II(12),
1511-1517, 1985.
A. Grnarov, J. Arlat, and A. Avizienis, "On the Performance of Software Fault-

Tolerance Strategies," Proc. FTCS 10, pp 251-253, 1980.
J. Kelly, D. Eckhardt, A. Caglayan, J. Knight, D. McAllister, M. Vouk, "A Large
Scale Second Generation Experiment in Multi-Version Software: Description and Early
Results", Proc. FTCS 18, pp 9-14, June 1988.
J.C. Knight and N.G. Leveson, "An Experimental Evaluation of the assumption of
Independence in Multi-version Programming", IEEE Trans. Soft. Eng., Vol. SE-12(1),
96-109, 1986.

J.-C. Laprie, "Dependability Evaluation of Software Systems in Operation," IEEE
Trans. Soft. Eng., Vol. SE-10 (6), 701-714, 1984.
B. Littlewood, and D.R. Miller, "A Conceptual Model of Multi-Version Software,"
FTCS 17, Digest of Papers, IEEE Comp. Soc. Press, pp 150-155, July 1987.
J. Musa, A. Iannino, and K. Okumoto, "Software Reliability: Measurement, Prediction,
Application," McGraw-Hill Book Co., 1987.
V.F. Nicola, and Ambuj Goyal, "Modeling of Correlated Failures and Community Error
Recovery in Multi-version Software," IEEE Trans. Soft. Eng., Vol. 16(3), pp, 1990.
A.M. Paradkar, "Performance Analysis of Multi-Stage N-Version Fault-Tolerant
Software," M.Sc. Thesis, North Carolina State University, 1990.
B. Randell, "System structure for software fault-tolerance", IEEE Trans. Soft. Eng.,
Vol. SE-1,220-232, 1975.

R.K. Scott, J.W. Gault and D.F. McAllister, "Fault-Tolerant Software Reliability
Modeling", IEEE Trans. Software Eng., Vol SE-13 (5), 582-592, 1987.
T.J. Shimeall and N.G. Leveson, "An Empirical Comparison of Software Fault-
Tolerance and Fault Elimination," 2nd Workshop on Software Testing, Verification and
Analysis, Banff, IEEE Comp. Soc., pp 180-187, July 1988.
K.S. Trivedi, "Probability and Statistics with Reliability, Queueing, and Computer
Science Applications, Prentice-Hall, New Jersey, 1982.
K.S. Tso, A. Avizienis, and J.P.J. Kelly, "Error Recovery in Multi-Version Software,"
Proc. IFAC SAFECOMP '86, Sarlat, France, 35-41, 1986.

K.S. Tso and A. Avizienis, "Community Error Recovery in N-Version Software: A
Design Study with Experimentation", Proc. IEEE 17th Fault-Tolerant Computing
Symposium, pp 127-133, 1987.
U. Voges (ed.), Software Diversity in Computerized Control Systems, Springer-Verlag,
Wien, Austria, 1988.

